久久久精品中文字幕麻豆发布_中文国产成人精品久久久_99热精品久久只有精品30_久久精品女人毛片国产

芬蘭Kibron專注表面張力儀測量技術,快速精準測量動靜態表面張力

熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

合作客戶/

拜耳公司.jpg

拜耳公司

同濟大學

同濟大學

聯合大學.jpg

聯合大學

寶潔公司

美國保潔

強生=

美國強生

瑞士羅氏

瑞士羅氏

當前位置首頁 > 新聞中心

蛋白質外聚物中多糖的比例——結論、致謝!

來源:上海謂載 瀏覽 2632 次 發布時間:2021-10-12


四、結論


油和/或 Corexit 的存在會導致 EPS 的蛋白質:多糖比率更高,并在中胚層實驗中降低 SFT。 在這些實驗中,SFT 與 蛋白質:具有負斜率的 EPS 多糖。 當開闊的海洋 水域和兩種不同的沿海水處理進行了比較, 蛋白質趨勢:多糖為 CEWAF > DCEWAF > WAF ≥ Control 并且對于 SFT,它是相反的, CEWAF < DCEWAF < WAF ≤ 對照。 因此,SFT 與膠體 EPS 中的蛋白質:多糖比率成反比。


當中宇宙水柱的不同尺寸分數為 相比之下,我們發現 EPS 膠體可以降低 SFT 蛋白質:多糖比例,表明有效的生物乳化 蛋白質的容量。 粒子濾波中 SFT 的比較 分數 (< 0.45 μm) 和 EPS 膠體分數 (< 0.45 μm 和 > 3 kDa),對于真正溶解的部分 (< 3 kDa),它是 表明只有前兩個包含 EPS 的部分具有容量 以降低 SFT,而 < 3 kDa 級分顯示與以下相同的 SFT 純海水或只有真正溶解有機碳的海水。


顯微鏡技術(即 CLSM 和 SEM)證實,正如預測的那樣,蛋白質主要在空氣 - 水界面富集, 強烈影響空氣/水界面處的 SFT 治療。 這些技術還可視化了不同的聚集體尺寸 和它們的分散,以及聚集體形成的重要性 通過陰離子EPS組分部分之間的Ca2+"橋接"。 SFT 可能會發生微小的變化,與蛋白質:多糖比率的變化相吻合,這可能是 pH 值變化的原因(十分之一) 單位),如 EPS 模型化合物所示,這可能在 CMC 周圍最為突出。 此外,我們表明蛋白質和酸性多糖的 EPS 模型成分比 Corexit 導致海水中膠束的自組裝甚至 當這些成分的濃度很低時。 這個 表明 EPS 在形成方面與 Corexit 相同或更有效 乳液。 然而,關于相互作用的更系統的研究 不同組件的不同組合,以及更多型號 單獨的化合物,可能需要更多地闡明在我們的中宇宙實驗中觀察到的復雜性。


致謝


這項研究得到了墨西哥灣的資助 支持名為 ADDOMEx 的聯盟研究的研究計劃 (微生物對分散劑和油的聚集和降解 Exopolymers) 聯盟。 原始數據可以在海灣找到 墨西哥研究倡議信息和數據合作組織 (GRIIDC) 在網址 https://doi.org/10.7266/N7PK0D64; https://doi.org/10。 7266/N78P5XZD; https://doi.org/10.7266/N74X568X; https://doi. org/10.7266/N79W0D1K。


參考


Angarska, J.K., Dimitrova, B.S., Danov, K.D., Kralchevsky, P.A., Ananthapadmanabhan, K.P., Lips, A., 2004. Detection of the hydrophobic surface force in foam films by measurements of the critical thickness of the film rupture. Langmuir 20, 1799–1806. https://doi.org/10.1021/la035751.


Bopp, R., Santschi, P.H., Li, Y.-H., Deck, B.L., 1981. Biodegradation and gas exchange of gaseous alkanes in model estuarine ecosystems. Org. Geochem. 3, 9–14. https://doi. org/10.1016/0146-6380(81)90007-3.


Bretherton, L., Williams, A.K., Genzer, J., Hillhouse, J., Kamalanathan, M., Finkel, Z.V., Quigg, A., 2018. Physiological response of 10 phytoplankton species exposed to Macondo oil and Corexit. J. Phycol. 54 (3), 317–328. https://doi.org/10.1111/jpy. 12625.


Burd, A.B., Jackson, G.A., 2009. Particle aggregation. Annu. Rev. Mar. Sci. 1, 65–90. https://doi.org/10.1146/annurev.marine.010908.163904.


Cai, Z., Gong, Y., Liu, W., Fu, J., O'Reilly, S.E., Hao, X., Zhao, D., 2016 Aug 15. 2016. A surface tension based method for measuring oil dispersant concentration in seawater. Mar. Pollut. Bull. 109 (1), 49–54. https://doi.org/10.1016/j.marpolbul.2016.06.028.


Chester, R., 1990. Marine Geochemistry. Unwin Hyman, Ltd, London. Chin, W.-C., Orellana, M.V., Verdugo, P., 1998. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 391, 568–572. https://doi.org/10. 1038/35345.


Chiu, M.-H., Garcia, S.G., Hwang, B., Claiche, D., Sanchez, G., Aldayafleh, R., Tsai, S.-M., Santschi, P.H., Quigg, A., Chin, W.-C., 2017. Corexit, oil and marine microgels. Mar. Pollut. Bull. 122, 376–378. https://doi.org/10.1016/j.marpolbul.2017.06.077.


da Cruz, G.F., Angolini, C.F.F., dos Santos Neto, E.V., Loh, W., Marsaioli, A.J., 2010. Exopolymeric substances (EPS) produced by petroleum microbial consortia. J. Braz. Chem. Soc. 21 (8), 1517–1523. https://doi.org/10.1590/S0103- 50532010000800016.


Decho, A.W., 2000. Microbial biofilms in intertidal systems: an overview. Cont. Shelf Res. 20, 1257–1273. https://doi.org/10.1010/S0278-4343(00)00022-4.


Doyle, S.M., Whitaker, E.A., De Pascuale, V., Wade, T.L., Knap, A.H., Santschi, P.H., Quigg, A., Sylvan, J.B., 2018. Rapid formation of microbe-oil aggregates and changes in community composition in coastal surface water following exposure to oil and corexit. Front. Microbiol. 1–16. https://doi.org/10.3389/fmicb.2018.00689. Emerson, S., Hedges, J., 2008. Chemical Oceanography and the Marine Carbon Cycle. Cambridge University Press, Cambridge, UK. Ghosh, A.K., Bandyopadhyay, P., 2012. Polysaccharide-protein interactions and their relevance in food colloidsa. In: Intech Open Science, https://doi.org/10.5772/50561. Guo, L., Coleman Jr., C.H., Santschi, P.H., 1994. The distribution of colloidal and dissolved organic carbon in the Gulf of Mexico. Mar. Chem. 45, 105–119. https://doi. org/10.1016/0304-4203(94)90095-7.


Gutierrez, T., Shimmield, T., Haidon, C., Black, K., Green, D.H., 2008. Emulsifying and metal ion binding activity of a glycoprotein exopolymer produced by Pseudoalteromonas sp. Strain TG12. Appl. Environ. Microbiol. 4867–4876. https:// doi.org/10.1128/AEM.00316-08.


Han, X., Wang, Z., Chen, M., Zhang, X., Tang, C.Y., Wu, Z., 2017. Acute responses of microorganisms from membrane bioreactors in the presence of NaOCl: protective mechanisms of extracellular polymeric substances. Environ. Sci. Technol. 51, 3233–3241. https://doi.org/10.1021/acs.est.6b05475.


Hatcher, P.G., Obeid, W., Wozniak, A.S., Xu, C., Zhang, S., Santschi, P.H., Quigg, A., 2018. Identifying oil/marine snow associations in mesocosm simulations of the deep water horizon oil spill event using solid-state 13C NMR spectroscopy. Mar. Pollut. Bull. 126, 159–165. https://doi.org/10.1016/j.marpolbul.2017.11.004.


Hung, C.-C., Santschi, P.H., 2001. Spectrophotometric determination of total uronic acids in seawater using cation exchange separation and pre-concentration lyophilization. Anal. Chim. Acta 427, 111–117. https://doi.org/10.1016/S0003-2670(00)01196-X.


Hung, C.-C., Guo, L., Schultz, G., Pinckney, J.L., Santschi, P.H., 2003. Production and fluxes of carbohydrate species in the Gulf of Mexico. Glob. Biogeochem. Cycles 17 (2), 1055. https://doi.org/10.1029/2002GB001988. Kamalanathan, M., Schwehr, K.A., Bretherton, L.J., Genzer, J., Hillhouse, J., Xu, C., Williams, A., Santschi, P.H., Quigg, A., 2018. Diagnostic tool to ascertain marine phytoplankton exposure to chemically enhanced water accommodated fraction of oil using Fourier Transform infrared spectroscopy. Mar. Pollut. Bull. 130, 170–178. https://doi.org/10.1016/j.marpolbul.2018.03.027.


McClements, D.J., 2011. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7, 2297–2316. https://doi.org/10.1039/C0SM00549E. Millero, F.J., 1996. Chemical Oceanography. CRC Press, Boca Raton, FL, pp. 469. Morris, D.L., 1948. Quantitative determination of carbohydrates with Dreywood's anthrone reagent. Science 107, 254–255.


Padday, J.F., Pitt, A.R., Pashley, R.M., 1975. Menisci at a free liquid surface: surface tension from the maximum pull on a rod. J. Chem. Soc., Faraday Trans. 1 71, 1919–1931. https://doi.org/10.1039/F19757101919.


Passow, U., Hetland, R.D., 2016. What happened to all of the oil? Oceanography 29, 88–95. https://doi.org/10.5670/oceanog.2016.73.


Pletikapic, G., Lannon, H., Murvai, U., Kellermayer, M.S.Z., Svetlicic, V., Brujic, J., 2014. Self-assembly of polysaccharides gives rise to distinct mechanical signatures in marine gels. Biophys. J. 107, 355–364. https://doi.org/10.1016/j.bpj.2014.04.065.


Prairie, J.C., Ziervogel, K., Camassa, R., McLaughlin, R.M., White, B.L., Dewald, C., Arnosti, C., 2015. Delayed settling of marine snow: Effects of density gradient and particle properties and implications for carbon cycling. Mar. Chem. 175, 28–38. https://doi.org/10.1016/j.marchem.2015.04.006.


Quigg, A., Passow, U., Chin, W.-C., Xu, C., Doyle, S., Bretherton, L., Kamalanathan, M., Williams, A.K., Sylvan, J.B., Finkel, Z.V., Knap, A.H., Schwehr, K.A., Zhang, S., Sun, L., Wade, T.L., Obeid, W., Hatcher, P.G., Santschi, P.H., 2016. The role of microbial exopolymers in determining the fate of oil and chemical dispersants in the ocean. Limnol. Oceanogr. Lett. 1, 3–26. https://doi.org/10.1002/lol2.10030.


Santschi, P.H., 2017. Texas A&M University Introduces Exopolymeric Substances as Agents in Enhancing the Self-Cleansing Capacity of Natural Waters. American Exopolymerics Science & Technology 25 feature article. http://www. paneuropeannetworks.com/special-reports/american-exopolymerics/. Sharqawy, M.H., Lienhard, J.H., Zubair, S.M., 2010. Thermophysical properties of seawater: a review of existing correlations and data. Desalin. Water Treat. 16, 354–380. https://doi.org/10.5004/dwt.2010.1079.


Smith, P.K., Krohn, R.I., Hermanson, G.T., Mallia, A.K., Gartner, F.H., Provenzano, E.K., Fujimoto, E.K., Goeke, N.M., Olson, B.J., Klenk, D.C., 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85. https://doi.org/10.1016/0003- 2697(85)90442-7.


Sun, L., Xu, C., Zhang, S., Lin, P., Schwehr, K.A., Quigg, A., Chiu, M.-H., Chin, W.-C., Santschi, P.H., 2017. Light-induced aggregation of microbial exopolymeric substances. Chemosphere 181, 675–681. https://doi.org/10.1016/j.chemosphere.2017. 04.099.


Tako, M., 2015. The Principle of Polysaccharide Gels. Adv. Biosci. Biotechnol. 6, 22–36. https://doi.org/10.4236/abb.2015.61004.


Tcholakova, S., Denkov, N.D., Lips, A., 2008. Phys. Chem. Chem. Phys. 10, 1608–1627. Tsai, S.M., Bangalore, P., Chen, E.Y., Lu, D., Chiu, M.H., Suh, A., Gehring, M., Cangco, J.P., Garcia, S.G., Chin, W.C., 2017. Graphene-induced apoptosis in lung epithelial cells through EGFR. J. Nanopart. Res. 19, 262–275. https://doi.org/10.1007/s11051- 017-3957-9.


Verdugo, P., Santschi, P.H., 2010. Polymer dynamics of DOC networks and gel formation in seawater. Deep Sea Res. II 57, 1486–1493. https://doi.org/10.1016/j.dsr2.2010. 03.002.


Verdugo, P., Alldredge, A.L., Azam, F., Kirchman, D.L., Passow, U., Santschi, P.H., 2004. The oceanic gel phase: a bridge in the DOM-POM continuum. Mar. Chem. 92, 67–85. https://doi.org/10.1016/j.marchem.2004.06.017.


Wade, T.L., Sweet, S.T., Sericano, J.L., Guinasso Jr., N., Diercks, A.-R., Highsmith, R.C., Asper, V.L., Joung, D., Shiller, A.M., Lohrenz, S.E., Joye, S.B., 2011. Analyses of water samples from the deepwater horizon oil spill: documentation of the sub-surface plume. In: Liu, Y. (Ed.), Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Geophysical Monograph Series. Vol. 195. AGU, Washington, D. C, pp. 77–82.


Wade, T.L., Morales-McDevitt, M., Bera, G., Shi, D., Sweet, S., Wang, B., Gold-Bouchot, G., Quigg, A., Knap, A.H., 2017. A method for the production of large volumes of WAF and CEWAF for dosing mesocosms to understand marine oil snow formation. Marine Heliyon 3, e00419. https://doi.org/10.1016/j.heliyon.2017.e00419.


Wang, L., Yoon, R.-H., 2004. Hydrophobic forces in the foam films stabilized by sodium dodecyl sulfate: effect of electrolyte. Langmuir 20, 11457–11464. https://doi.org/10. 1021/la048672g.


Warszynski, P., Barzyk, W., Lunkenheimer, K., Fruhner, H., 1998. Surface tension and surface potential of Na n-dodecyl sulfate at the air-solution interface: model and experiment. J. Phys. Chem. B 102, 10948. https://doi.org/10.1021/jp983901r. Xu, C., Zhang, S.J., Chuang, C.Y., Miller, E.J., Schwehr, K.A., Santschi, P.H., 2011. Chemical composition and relative hydrophobicity of microbial exopolymeric substances (EPS) isolated by anion exchange chromatography and their actinide-binding affinities. Mar. Chem. 126, 27–36. https://doi.org/10.1016/j.marchem.2011.03.004.


Xu, C., Zhang, S., Beaver, M., Wozniak, A., Obeid, W., Lin, Y., Wade, T.L., Schwehr, K.A., Lin, P., Sun, L., Hatcher, P.G., Kaiser, K., Chin, W.-C., Chiu, M.-H., Knap, A., Kopp, K., Quigg, A., Santschi, P.H., 2018a. Decreased sedimentation efficiency of petro-carbon and non-petro-carbon caused by water-accommodated-fraction (WAF) and Corexitenhanced water-accommodated-fraction (CEWAF) in a coastal microbial communityseeded mesocosmt. Mar. Chem. https://doi.org/10.1016/j.marchem.2018.09.002.


(In press). Xu, C., Zhang, S., Beaver, M., Lin, P., Sun, L., Doyle, S.M., Sylvan, J.B., Wozniak, A., Hatcher, P.G., Kaiser, K., Yan, G., Schwehr, K.A., Lin, Y., Wade, T.L., Chin, W.-C., Chiu, M.-H., Quigg, A., Santschi, P.H., 2018b. The role of microbially-mediated exopolymeric substances (EPS) in regulating Macondo oil transport in a mesocosm experiment. Mar. Chem. https://doi.org/10.1016/j.marchem.2018.09.005. (In press).


Z?ncker, B., Bracher, A., R?ttgers, R., Engel, A., 2017. Variations of the organic matter composition in the sea surface microlayer: a comparison between open ocean, coastal, and upwelling sites off the Peruvian coast. Front. Microbiol. 8, 2369. https:// doi.org/10.3389/fmicb.2017.02369.



蛋白質外聚物中多糖的比例——摘要、簡介

蛋白質外聚物中多糖的比例——方法

蛋白質外聚物中多糖的比例——結果與討論

蛋白質外聚物中多糖的比例——結論、致謝!

久久久精品中文字幕麻豆发布_中文国产成人精品久久久_99热精品久久只有精品30_久久精品女人毛片国产
  • <abbr id="uoc6q"><source id="uoc6q"></source></abbr>
    <abbr id="uoc6q"></abbr>
  • <dl id="uoc6q"><acronym id="uoc6q"></acronym></dl>
    欧美成人一区二区三区在线观看| 亚洲精品一区二区三区四区高清| 欧美精选在线播放| 欧美国产精品一区| 日本不卡一二三| 99免费精品在线观看| 久久新电视剧免费观看| 午夜精品aaa| 色婷婷一区二区三区四区| 国产欧美日韩激情| 九色综合狠狠综合久久| 欧美二区三区的天堂| 洋洋av久久久久久久一区| eeuss鲁一区二区三区| 久久久久99精品一区| 免费av网站大全久久| 欧美日韩一区三区四区| 一区二区国产盗摄色噜噜| av一本久道久久综合久久鬼色| 久久久欧美精品sm网站| 麻豆免费精品视频| 69久久夜色精品国产69蝌蚪网| 一区二区三区视频在线看| 99久久精品免费看国产| 欧美国产日韩a欧美在线观看| 国内精品久久久久影院一蜜桃| 欧美一卡在线观看| 青青草视频一区| 欧美一区二区三区视频在线| 午夜在线电影亚洲一区| 欧美日韩精品一区二区天天拍小说 | 久久99精品久久久久久动态图| 欧美图片一区二区三区| 一区二区三区四区视频精品免费 | 国产精品一区二区久激情瑜伽 | 免费精品99久久国产综合精品| 欧美三级日韩在线| 亚洲高清在线精品| 欧美午夜免费电影| 亚洲国产日韩在线一区模特| 欧美在线一区二区| 午夜视频一区二区| 欧美精品 国产精品| 午夜精品一区二区三区三上悠亚| 欧美精三区欧美精三区| 日韩精品免费专区| 日韩亚洲欧美综合| 国内一区二区在线| 国产欧美日本一区二区三区| 处破女av一区二区| 中文字幕欧美一| 色美美综合视频| 亚洲va欧美va天堂v国产综合| 欧美精选午夜久久久乱码6080| 日本成人在线一区| 久久久亚洲高清| 成人免费视频app| 18欧美乱大交hd1984| 欧美羞羞免费网站| 蜜桃一区二区三区四区| 久久久精品国产免大香伊| 成人av网址在线| 亚洲精品国产成人久久av盗摄 | 国产精品福利在线播放| 99久久精品国产一区| 一区二区三区**美女毛片| 91超碰这里只有精品国产| 国精产品一区一区三区mba桃花| 亚洲国产激情av| 欧美在线视频你懂得| 免费在线成人网| 国产视频911| 91成人在线免费观看| 美女视频黄久久| 国产精品剧情在线亚洲| 欧美日韩久久不卡| 国产精品一区一区三区| 亚洲美女在线一区| 欧美大尺度电影在线| 99久久精品国产一区二区三区| 丝瓜av网站精品一区二区| 久久婷婷综合激情| 91免费在线看| 麻豆国产精品官网| 亚洲同性同志一二三专区| 91精品国产综合久久香蕉麻豆 | 国产日本亚洲高清| 日本二三区不卡| 狠狠色丁香婷婷综合| 一区二区在线观看免费| 欧美精品一区二区三| 欧美综合在线视频| 国产精品一区二区在线播放| 亚洲电影欧美电影有声小说| 国产视频一区二区在线观看| 欧美色精品在线视频| 国产乱理伦片在线观看夜一区 | 91老司机福利 在线| 日韩精品乱码免费| 中文字幕精品一区二区精品绿巨人| 91豆麻精品91久久久久久| 国产在线麻豆精品观看| 亚洲综合久久久久| 国产亚洲精品久| 这里只有精品视频在线观看| 99精品偷自拍| 激情欧美一区二区三区在线观看| 亚洲一区二区三区国产| 国产欧美一区二区精品忘忧草| 欧美日韩国产高清一区二区| 成人高清视频在线观看| 久久福利资源站| 亚洲国产日产av| 国产精品国产三级国产普通话蜜臀| 日韩视频免费直播| 91黄色免费版| 成人妖精视频yjsp地址| 免播放器亚洲一区| 亚洲国产日韩精品| 1区2区3区精品视频| 久久久久久久久久久久久女国产乱| 欧美日韩国产综合一区二区| 99久久精品国产一区二区三区 | 日韩精品专区在线影院观看| 色欧美88888久久久久久影院| 国产成人午夜99999| 美女视频免费一区| 婷婷久久综合九色国产成人| 亚洲女爱视频在线| 国产精品无码永久免费888| 日韩欧美国产综合在线一区二区三区| 欧美亚洲高清一区| 色综合久久天天| 成人h精品动漫一区二区三区| 精品一二三四区| 美女爽到高潮91| 日韩精品91亚洲二区在线观看| 一区二区三区欧美激情| 日韩一区欧美一区| 欧美国产成人在线| 久久久www成人免费无遮挡大片| 欧美tk—视频vk| 日韩欧美在线综合网| 91超碰这里只有精品国产| 精品视频1区2区3区| 欧美自拍偷拍一区| 在线日韩国产精品| 在线观看亚洲精品| 欧美在线观看视频在线| 日本福利一区二区| 在线影视一区二区三区| 91极品美女在线| 在线视频观看一区| 在线观看成人小视频| 91黄色免费看| 欧美午夜精品理论片a级按摩| 欧美伊人久久久久久午夜久久久久| 色综合天天综合网国产成人综合天 | 毛片av一区二区| 蜜桃视频在线一区| 麻豆91在线播放| 激情成人综合网| 国产一区二区精品久久99| 国产又粗又猛又爽又黄91精品| 久久精品国产一区二区三| 蜜桃av一区二区| 国内精品视频666| 国产成人免费视频精品含羞草妖精| 国产成人精品免费看| 成人高清伦理免费影院在线观看| 成人av网址在线观看| 色诱视频网站一区| 欧美日韩亚洲综合| 欧美一区二区视频在线观看2020| 欧美一区二区三区在线观看视频| 日韩一区二区三区电影在线观看| 精品国内片67194| 国产日韩精品一区二区三区| 国产精品久久久久桃色tv| ...xxx性欧美| 亚洲成精国产精品女| 蜜臀久久99精品久久久久久9| 国内精品在线播放| 成人va在线观看| 日本二三区不卡| 777精品伊人久久久久大香线蕉| 日韩一区二区不卡| 久久久久久久久久久电影| 国产精品福利一区| 亚洲精品免费电影| 午夜成人免费视频| 久久成人综合网| 东方欧美亚洲色图在线| 日本丰满少妇一区二区三区| 91 com成人网| 久久久电影一区二区三区| 《视频一区视频二区| 五月天久久比比资源色| 精品亚洲成av人在线观看| 不卡的电影网站|