久久久精品中文字幕麻豆发布_中文国产成人精品久久久_99热精品久久只有精品30_久久精品女人毛片国产

芬蘭Kibron專注表面張力儀測量技術,快速精準測量動靜態表面張力

熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

合作客戶/

拜耳公司.jpg

拜耳公司

同濟大學

同濟大學

聯合大學.jpg

聯合大學

寶潔公司

美國保潔

強生=

美國強生

瑞士羅氏

瑞士羅氏

當前位置首頁 > 新聞中心

采用殼聚糖-三聚磷酸酯-百里香納米顆粒經熱噴墨打印而成的新型活性包裝材料——結論、致謝!

來源:Unisense 瀏覽 1939 次 發布時間:2021-09-13


結論


與對照薄膜相比,印刷薄膜表現出改善的水蒸氣阻隔性能。 Qo 印刷薄膜比混合薄膜更有效。 與對照薄膜相比,印刷的 Qo 薄膜的斷裂伸長率降低,拉伸強度增加,而印刷的混合薄膜的伸長率和拉伸強度均增加。


Th 納米封裝印刷的效率取決于印刷層數、接觸角、添加到分散體中的甘油量和薄膜類型。 兩種薄膜中 Th 的傳遞都在 8 天時完成,表明這些薄膜是傳遞活性化合物的良好平臺。 然而,NQoThs 在薄膜中的分布表現出不同的釋放曲線; Qo 薄膜在第一階段表現出突釋,而混合薄膜表現出較慢的釋放。


與使用 NQos 印刷的薄膜相比,使用 NQoThs 印刷的薄膜對革蘭氏陽性菌(L. innocua 和 S. aureus)和革蘭氏陰性菌(S. typhimurium、E. aerogenes、P. aeruginosa 和 E. coli)表現出更高的 AM和對照膜。 革蘭氏陰性菌(鼠傷寒沙門氏菌、產氣大腸桿菌和大腸桿菌)獲得了最佳結果。


這些發現表明,可印刷納米技術的使用可以改善由可再生生物聚合物制備的薄膜的功能,因為這些薄膜可以提高水蒸氣阻隔性,作為傳遞活性化合物的良好平臺,并增加抗菌活性。 因此,這些薄膜可能有助于開發新的食品包裝材料。


致謝


作者要感謝 INNOVA-CORFO N度 12IDL2-13621 的財政支持。 我們感謝智利圣地亞哥大學的 Fernando Osorio 博士和 Ricardo Andrade 博士對接觸角測量的幫助。 我們還要感謝 Conicyt 授予 Nelson Caro 的博士獎學金。


參考



Abdollahi, M., Rezaei, M., & Farzi, G. (2012). A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. Journal of Food Engineering, 111(2), 343e350.


Abugoch, L. (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. In Advances in food and nutrition (Vol. 58, pp. 1e31). Elsevier INC.


Abugoch, L., Romero, N., Tapia, C., Rivera, M., & Silva, J. (2008). Study of some physicochemical and functional properties of quinoa (Chenopodium Quinoa Willd.) protein isolates. Journal of Agricultural and Food Chemistry, 56(12), 4745e4750.


Abugoch, L., Tapia, C., Villaman, M., Yazdani-Pedraman, M., & Díaz-Dosque, M. (2011). Characterization of quinoa protein chitosan blend edible films. Food Hydrocolloids, 25, 879e886.


Adame, D., & Beall, G. W. (2009). Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Applied Clay Science, 42, 545e552.


Akbari, B., Pirhadi, M., & Zandrahim, M. (2011). Particle size characterization of nanoparticles: a practical approach. Iranian Jorurnal of Material Science and Engineering, 8(2), 48e56.


Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493e496.


Berger, J., Reist, M., Mayer, J., Felt, O., Peppas, N., & Gurny, R. (2004). Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 57, 19e34.


Bharadwaj, R. K. (2001). Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules, 34(26), 9189e9192.


Bouten, P., Zonjee, M., Bender, J., Yauw, S., van Goor, H., van Hest, J., et al. (2014). The chemistry of tissue adhesive materials. Progress in Polymer Science, 39(7), 1375e1405.


Bradford, M. (1976). Rapid and sensitive method for the quantitation of micrograms quantities of protein utilizing the principle of protein-dye binding. Anaytical Biochemistry, 72, 248e254.


Brandsch, J., Mercea, P., Rüter, M., Tosa, V., & Piringer, O. (2002). Migration modeling as a tool for quality assurance of food packaging. Food Additives & Contaminants, 19, 22e41.


Buanz, A., Saunders, M., Basit, A., & Gaisford, S. (2011). Preparation of personalizeddose salbutamol sulphate oral films with thermal ink-jet printing. Pharmaceutical Research, 28(10), 2386e2392.


Butler, B., Vergano, P., Testin, R., Bunn, J., & Wiles, J. (1996). Mechanical and barrier properties of edible chitosan films as affected by composition and storage. Journal of Food Science, 61(5), 953e955.


Calvo, P., Remu~nan-Lopez, C., Vila-Jato, J. L., & Alonso, M. J. (1997). Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. Journal of Applied Polymer Science, 63, 125e132.


Caner, C., Vergano, P., & Wiles, J. (1998). Chitosan films: mechanical and permeation properties as affected by acid, plasticizer, and storage. Journal of Food Science, 63(6), 1049e1053.


Clapper, J. D., Pearce, M. E., Guymon, C. A., & Salem, A. K. (2008). Biotinylated biodegradable nanotemplated hydrogel networks for cell interactive applications. Biomacromolecules, 9(4), 1188e1194.


Colla, E., Sobral, P., & Menegalli, F. (2006). Amaranthus cruentus flour edible films: influence of stearic acid addition, plasticizer concentration, and emulsion stirring speed on water vapor permeability and mechanical properties.


Journal of Agricultural and Food Chemistry, 54, 6645e6653. Cortez, M., Martínez, A., Ezquerra, J., Graciano, A., Rodriguez, F., & Castillo, M. (2010).


Chitosan composite films: thermal, structural, mechanical and antifungal properties. Carbohydrate Polymers, 82, 305e315. Davis, T., Yezek, L., Pinheiro, J., & van Leeuwen, H. (2005). Measurement of Donnan potentials in gels by in situ microelectrode voltammetry. Journal of Electroanalytical Chemistry, 584(2), 100e109.


De Britto, D., & Assis, O. B. G. (2012). Chemical, biochemical, and microbiological aspects of chitosan quaternary salt as active coating on sliced apples. Revista Espa~nola de Ciencia Y Tecnología de Alimento, 32(3), 599e605.


De Moura, M., Aouada, F., Avena-Bustillos, R., McHugh, T., Krochta, J., & Mattoso, L. (2009). Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. Journal of Food Engineering, 92(4), 448e453.


Di Pierro, P., Sorrentino, A., Mariniello, L., Giosafatto, C., & Porta, R. (2011). Chitosan/ whey protein film as active coating to extend Ricotta cheese shelf-life. Lebensmittel- Wissenschaft Und-Technologie, 44(10), 2324e2327.


Du, W.-L., Niu, S.-S., Xu, Y.-L., Xu, Z.-R., & Fan, C.-L. (2009). Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydrate Polymers, 75(3), 385e389.


Dutta, P., Tripathi, S., Mehrotra, G., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114(4), 1173e1182.


Ely, D., Garcia, R. E., & Thommes, M. (2014). OstwaldeFreundlich diffusion-limited dissolution kinetics of nanoparticles. Powder Technology, 257, 120e123. Falguera, V., Quintero, J., Jimenez, A., Mu~noz, J., & Ibarz, A. (2011). Edible films and coatings: structures, active functions and trends in their use. Trends in Food Science & Technology, 22, 292e303. Fan, J.-M., Ma,W., Liu, G.-Q., Yin, S.-W., Tang, C.-H., & Yang, X.-Q. (2014). Preparation and characterization of kidney bean protein isolate (KPI)-chitosan (CH) composite films prepared by ultrasonic pretreatment. Food Hydrocolloid, 36, 60e69. Fernandes, S., Freire, C., Silvestre, A., Neto, C., Gandini, A., Berglund, L., et al. (2010). Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydrate Polymers, 81, 394e401. Ferreira, C., Nunes, C., Delgadillo, I., & Lopes-da-Silva, J. A. (2009). Characterization of chitosan-whey protein films at acid pH. Food Research International, 47(7), 807e813. Freudenberg, U., Zimmermann, R., Schmidt, K., Holger Behrens, S., & Werner, C. (2007). Charging and swelling of cellulose films. Journal of Colloid and Interface Science, 309, 360e365. de Gans, B.-J., Duineveld, P., & Schubert, U. (2004). Inkjet printing of polymers: state of the art and future developments. Advanced Materials, 16(3), 203e213. Garsuch, V., & Breitkreutz, J. (2010). Comparative investigations on different polymers for the preparation of fast-dissolving oral films. Journal of Pharmacology and Pharmacotherapeutics, 62(4), 539e545. Genina, N., Janben, M., Breitenbach, A., Breitkreutz, J., & Sandler, N. (2013). Evaluation of different substrates for inkjet printing of rasagiline mesylate. European Journal of Pharmaceutics and Biopharmaceutics, 85(3), 1075e1083. Ghanbarzadeh, B., & Almasi, H. (2011). Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. International Journal of Biological Macromolecules, 48, 44e49. Ghasemnezhad, M., Zareh, S., Rassa, M., & Sajedi, R. H. (2013). Effect of chitosan coating on maintenance of aril quality, microbial population and PPO activity of pomegranate (Punica granatum L. cv. Tarom) at cold storage temperature. Journal of the Science of Food and Agriculture, 93(2), 368e374. Goy, R. C., de Britto, D., & Assis, O. B. G. (2009). A review of the antimicrobial activity of chitosan. Polímeros: Ci^encia e Tecnologia, 19(3), 241e247. Grob, K. (2008). The future of simulants in compliance testing regarding the migration from food contact materials into food. Food Control, 19(3), 263e268. Guarda, A., Rubilar, J., Miltz, J., & Galotto, M. (2011). The antimicrobial activity of microencapsulated thymol and carvacol. International Journal of Food Microbiology, 146(2), 144e150. Hosseini, S., Rezaei, M., Zandi, M., & Ghavi, F. (2013). Preparation and functional properties of fish gelatinechitosan blend edible films. Food Chemistry, 136(3e4), 1490e1495. Jia, D., Fang, Y., & Yao, K. (2009). Water vapor barrier and mechanical properties of konjac glucomannan-chitosan-soy protein isolate edible films. Food and Bioproducts Processing, 87, 7e10. Khan, M. S., Fon, D., Li, X., Tian, J., Forsythe, J., Garnier, G., et al. (2010). Biosurface engineering through ink jet printing. Colloids and Surfaces B: Biointerfaces, 75(2), 441e447. Khan, T. A., Peh, K. K., & Chang, H. S. (2000). Mechanical, bioadhesive strength and biological evaluations of chitosan films for wound dressing. Journal of Pharmaceutical Sciences, 3(3), 303e311. Khoee, S., Sattari, A., & Atyabi, F. (2012). Physico-chemical properties investigation of cisplatin loaded polybutyladipate (PBA) nanoparticles prepared by w/o/w. Materials Science and Engineering C, 32(5), 1078e1086. Kipphan, H. (2001). Handbook of print media: Technologies and production methods (pp. 137e141). Springer Science & Business Media. Kong, M., Chen, X., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology, 144, 51e63. Kurek, M., Brachais, C.-H., Nguimjeu, C., Bonnotte, A., Voilley, A., Galic, K., et al. (2012). Structure and thermal properties of a chitosan coated polyethylene bilayer film. Polymer Degradation and Stability, 97(8), 1232e1240. Kurek, M., Galus, S., & Debeaufor, F. (2014). Surface, mechanical and barrier properties of bio-based composite films based on chitosan and whey protein. Food Packaging and Shelf Life, 1, 56e67. Kwok, D. Y., & Neumann, A. W. (1999). Contact angle measurement and contact angle interpretation. Advances in Colloid and Interface Science, 81(3), 167e249. Lavertu, M., Xia, Z., Serreqi, A. N., Berrada, M., Rodrigues, A., Wang, D., et al. (2003). A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. Journal of Pharmaceutical and Biomedical Analysis, 32(6), 1149e1158. Lopez-Leon, T., Ortega-Vinuesa, J., Bastos-Gonzalez, D., & Elaissari, A. (2014). Thermally sensitive reversible microgels formed by poly(N-Isopropylacrylamide) charged chains: a Hofmeister effect study. Journal of Colloid and Interface Science, 426, 300e307. Majeti, N., & Kumar, R. (2000). A review: chitin and chitosan applications. Reactive and Functional Polymers, 46(1), 1e27. McHugh, T. H., Avena-Bustillos, R., & Krochta, J. M. (1993). Hydrophilic edible films: modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4), 899e903. Melendez, P., Kane, K., Ashvar, C., Albrecht, M., & Smith, P. (2008). Thermal inkjet application in the preparation of oral dosage forms: dispensing of prednisolone solutions and polymorphic characterization by solid-state spectroscopic techniques. Journal of Pharmaceutical Sciences, 97(7), 2619e2636. Müller, R. H., Jacobs, C., & Kayser, O. (2001). Nanosuspensions as particulate drug formulations in therapy rationale for development and what we can expect for the future. Advanced Drug Delivery Reviews, 47, 3e19. Muzzarelli, R. (1977). Chitin (p. 326). Oxford: Pergamon Press. National Committee for Clinical Laboratory Standards. (1990). Performance standards for antimicrobial disk susceptibility tests. Approved standard M2eA4, forth ed., Villanova, Pa. NCh1151.Of1976. (1999). Laminas y películas plasticas e Determinacion de las propiedades de traccion. NORMA CHILENA OFICIAL (p. 13). NCh2098.Of2000. (2000). Películas de recubrimiento organico e Determinacion de la transmision de vapor de agua. NORMA CHILENA OFICIAL (p. 13). Nelson, D., & Cox, M. (2006). Lehninger principles of biochemistry (4th ed., pp. 75e81). New York: Freeman and Company. Olsson, E., Johansson, C., & J€arnstr€om, L. (2014). Montmorillonite for starch-based barrier dispersion coatingdPart 1: the influence of citric acid and poly(- ethylene glycol) on viscosity and barrier properties. Applied Clay Science, 97e98, 160e166. Pan, K., Chen, H., Davidson, M., & Zhong, Q. (2014). Thymol nanoencapsulated by sodium caseinate: Physical and antilisterial properties. Journal of Agricultural and Food Chemistry, 62(7), 1649e1657. Pardeike, J., Strohmeier, D., Schr€odl, N., Voura, C., Gruber, M., Khinast, J., et al. (2011). Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. International Journal of Pharmaceutics, 420, 93e100. Paseiro-Losada, P., Simal Lozano, J., Abuín, S., Lopez Mahía, P., & Simal Gandara, J. (1993). Kinetics of the hydrolysis of bisphenol A diglycidyl ether (BADGE) in water based food simulants. Implications for legislation on the migration on BADGE-type epoxy resins into foodstuffs. Fresenius' Journal of Analytical Chemistry, 345, 527e532. Pereda, M., Amica, G., & Marcovich, N. (2012). Development and characterization of edible chitosan/olive oil emulsion films. Carbohydrate Polymers, 87(2), 1318e1325. Pereda, M., Aranguren, M., & Marcovich, N. (2008). Characterization of chitosan/ caseinate films. Journal of Applied Polymer Science, 107(2), 1080e1090. Perez-Gago, M., & Krochta, J. (2001). Lipid particle size effect on water vapor permeability and mechanical properties of whey protein/beeswax emulsion films. Journal of Agricultural Food Chemistry, 49(2), 996e1002. Philo, M., Fordham, P., Damant, A., & Castle, L. (1997). Measurement of styrene oxide in polystyrenes, estimation of migration to foods, and reaction kinetics and products in food simulants. Food and Chemical Toxicology, 35(8), 821e826. Qiu, M., Jiang, H., Ren, G., Huang, J., &Wang, X. (2012). Effect of chitosan coatings on postharvest green asparagus quality. Carbohydrate Polymers, 92(2), 2027e2032. Rabea, E., Badawy, M., Stevens, C., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4(6),1458e1465. Ramos, M., Jimenez, A., Peltzer, M., & Garrigos, C. (2012). Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. Journal of Food Engineering, 109(3), 513e519. Rinaudo, M., Milas, M., & Le Dung, P. (1993). Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. International Journal of Biological Macromolecules, 15(5), 281e285. Rivero, S., García, M. A., & Pinotti, A. (2009). Composite and bi-layer films based on gelatin and chitosan. Journal of Food Engineering, 90(4), 531e539. Scoutaris, N., Alexander, M. R., Gellert, P. R., & Roberts, C. J. (2011). Inkjet printing as a novel medicine formulation technique. Journal of Controlled Release, 156(2), 179e185. Shi, A.-M., Wang, L.-J., Li, D., & Adhikari, B. (2013). Characterization of starch films containing starch nanoparticles Part 1: physical and mechanical properties. Carbohydrate Polymers, 96(2), 593e601. Sorrentino, A., Gorrasi, G., & Vittoria, V. (2007). Potential perspectives of bionanocomposites for food packaging applications. Trends in Food Science & Technology, 18(2), 84e95. Tapia, C., Montezuma, V., & Yazdani-Pedram, M. (2008). Microencapsulation by spray coagulation of diltiazem HCl in calcium alginate-coated chitosan. AAPS PharmSciTech, 9, 1198e1206. Torres, M., Aimoli, C., Beppu, M., & Frejlich, J. (2005). Chitosan membrane with patterned surface obtained through solution drying. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 268(1e3), 175e179. Tripathi, P., & Dubey, N. K. (2004). Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biology and Technology, 32(3), 235e245. Valenzuela, C., Abugoch, L., & Tapia, C. (2013). Quinoa protein-chitosan-sunflower oil edible film: mechanical, barrier and structural properties. LWT e Food Science and Technology, 50(2), 531e537. Vargas, M., Albors, A., Chiralt, A., & Gonzalez-Martínez, C. (2009). Characterization of chitosan-oleic acid composite films. Food Hydrocolloids, 23(2), 536e547. Wazed Ali, S., Rajendran, S., & Joshi, M. (2011). Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydrate Polymers, 83(2), 438e446. Wiles, J. L., Vergano, P. J., Barron, F. H., Bunn, J. M., & Testin, R. F. (2000).Water vapor transmission rates and sorption behavior of chitosan films. Journal of Food Science, 65(7), 1175e1179. Yamaguchi, I., Iizuka, S., Osaka, A., Monma, H., & Tanaka, J. (2003). The effect of citric acid addition on chitosan/hydroxyapatite composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 214(1e3), 111e118. Yixiang, X., Xi, R., & Milford, A. H. (2006). Chitosan/clay nanocomposite film preparation and characterization. Journal of Applied Polymer Science, 99(4), 1684e1691. Yoksan, R., & Chirachanchai, S. (2010). Silver nanoparticle-loaded chitosanestarch based films: fabrication and evaluation of tensile, barrier and antimicrobial properties. Materials Science and Engineering C, 30, 891e897. Zhong, Y., Song, X., & Li, Y. (2011). Antimicrobial, physical and mechanical properties of kudzu starchechitosan composite films as a function of acid solvent types. Carbohydrate Polymers, 84(1), 335e342.




采用殼聚糖-三聚磷酸酯-百里香納米顆粒經熱噴墨打印而成的新型活性包裝材料——摘要、簡介

采用殼聚糖-三聚磷酸酯-百里香納米顆粒經熱噴墨打印而成的新型活性包裝材料——材料和方法

采用殼聚糖-三聚磷酸酯-百里香納米顆粒經熱噴墨打印而成的新型活性包裝材料——結果與討論

采用殼聚糖-三聚磷酸酯-百里香納米顆粒經熱噴墨打印而成的新型活性包裝材料——結論、致謝!

久久久精品中文字幕麻豆发布_中文国产成人精品久久久_99热精品久久只有精品30_久久精品女人毛片国产
  • <abbr id="uoc6q"><source id="uoc6q"></source></abbr>
    <abbr id="uoc6q"></abbr>
  • <dl id="uoc6q"><acronym id="uoc6q"></acronym></dl>
    91女人视频在线观看| 一本久久精品一区二区| 国产精品一区二区无线| 色综合天天综合给合国产| 欧美一二区视频| 樱花草国产18久久久久| 国产剧情一区二区| 欧美日本免费一区二区三区| 自拍偷拍国产精品| 国产一区二区福利视频| 91精品国产综合久久小美女| 亚洲精品亚洲人成人网在线播放| 国产精品伊人色| 欧美一区二区三区四区久久| 一区二区三区电影在线播| 国产成人精品综合在线观看 | 成人免费高清视频在线观看| 日韩一区二区电影网| 亚洲综合丁香婷婷六月香| 成人免费高清视频| 国产亚洲一二三区| 麻豆国产精品官网| 这里只有精品视频在线观看| 亚洲国产一区在线观看| 91丨porny丨国产入口| 欧美激情综合五月色丁香小说| 免费成人在线网站| 欧美男男青年gay1069videost | 成人午夜电影网站| 国产无人区一区二区三区| 久久av老司机精品网站导航| 欧美高清激情brazzers| 亚洲高清免费观看 | 国产亚洲美州欧州综合国| 免费不卡在线观看| 欧美久久久影院| 亚洲高清在线精品| 欧美日韩精品一区视频| 亚洲一区二区三区四区五区中文| 色综合久久久久综合体桃花网| 国产精品久久久久国产精品日日| 国产69精品久久99不卡| 国产精品视频线看| 暴力调教一区二区三区| 中文字幕亚洲在| thepron国产精品| 国产精品白丝在线| 91视频国产观看| 亚洲欧美另类小说| 91成人免费在线| 五月综合激情婷婷六月色窝| 69av一区二区三区| 青青草视频一区| 精品福利视频一区二区三区| 国产福利不卡视频| 国产精品午夜春色av| kk眼镜猥琐国模调教系列一区二区| 亚洲特黄一级片| 日本久久一区二区| 午夜精品aaa| 精品久久久久香蕉网| 国产麻豆视频精品| 国产精品久久久久四虎| 91成人免费电影| 日产欧产美韩系列久久99| 日韩一区二区免费在线观看| 激情小说欧美图片| 国产欧美一区二区三区鸳鸯浴 | 91理论电影在线观看| 一级精品视频在线观看宜春院| 欧美日韩久久久久久| 日本不卡在线视频| 久久久久久久综合色一本| 成人av在线一区二区三区| 一区二区在线观看免费视频播放| 欧美美女黄视频| 精品一区二区三区香蕉蜜桃| 国产精品热久久久久夜色精品三区 | 亚洲精品免费播放| 欧美三级一区二区| 美国一区二区三区在线播放| 久久久精品国产免大香伊| 99麻豆久久久国产精品免费 | 国内精品视频666| 国产精品免费丝袜| 精品视频免费在线| 国产一区日韩二区欧美三区| 国产精品久久久久久久蜜臀| 欧美唯美清纯偷拍| 狠狠色狠狠色综合| 亚洲精品国产无天堂网2021| 欧美一区二区三区精品| 国产精品一卡二| 一区二区成人在线视频| 欧美精品一区二区三区蜜桃视频| 99热精品一区二区| 蜜臂av日日欢夜夜爽一区| 国产精品久久久久婷婷二区次| 欧美精品粉嫩高潮一区二区| 国产成人一区在线| 亚洲va国产天堂va久久en| 国产欧美日韩中文久久| 欧美日韩视频在线一区二区| 国产ts人妖一区二区| 亚洲国产日韩一级| 国产区在线观看成人精品 | 国产精品国产三级国产有无不卡| 欧美老肥妇做.爰bbww视频| 粉嫩在线一区二区三区视频| 日韩avvvv在线播放| ●精品国产综合乱码久久久久| 777午夜精品视频在线播放| 不卡av免费在线观看| 久久成人免费日本黄色| 伊人开心综合网| 国产欧美日产一区| 7777精品伊人久久久大香线蕉的 | 国产成人亚洲精品狼色在线 | www.66久久| 久久超碰97中文字幕| 一区二区三区免费| 国产精品女主播av| 精品欧美一区二区在线观看| 欧美丝袜丝交足nylons| 不卡一区二区三区四区| 精品中文av资源站在线观看| 亚洲亚洲精品在线观看| 中文字幕一区二区视频| 久久久.com| 777亚洲妇女| 在线一区二区三区做爰视频网站| 国产很黄免费观看久久| 麻豆国产欧美日韩综合精品二区| 亚洲午夜av在线| **网站欧美大片在线观看| 久久综合精品国产一区二区三区 | 亚洲色大成网站www久久九九| 精品国产一区二区三区久久影院 | 国产亚洲一区二区三区在线观看| 欧美精品日韩精品| 一本一道波多野结衣一区二区| 岛国一区二区三区| 国内成人精品2018免费看| 六月婷婷色综合| 日本中文字幕一区| 亚洲成av人片在www色猫咪| 亚洲精品成人a在线观看| 中文字幕在线不卡视频| 国产日韩精品一区二区三区| 精品国产91洋老外米糕| 日韩亚洲国产中文字幕欧美| 欧美久久久久中文字幕| 精品污污网站免费看| 欧美性生活久久| 欧美四级电影在线观看| 欧美在线短视频| 欧洲日韩一区二区三区| 91久久国产综合久久| 在线免费一区三区| 一本久久a久久免费精品不卡| 91美女在线看| 色综合天天做天天爱| 一本久久a久久精品亚洲| 91女人视频在线观看| 一本大道久久精品懂色aⅴ| 91在线视频网址| 色94色欧美sute亚洲线路一久| 色综合激情五月| 色激情天天射综合网| 日本精品免费观看高清观看| 色哟哟在线观看一区二区三区| 91蜜桃网址入口| 欧美在线观看你懂的| 欧美日韩一区成人| 欧美另类videos死尸| 欧美一级一区二区| 精品国产乱码久久| 美女网站色91| 日本欧美肥老太交大片| 毛片av一区二区| 精品亚洲免费视频| 国产乱人伦偷精品视频免下载 | 精品黑人一区二区三区久久| 久久一夜天堂av一区二区三区| www久久精品| 国产视频一区在线播放| 国产精品嫩草久久久久| 亚洲精品国产品国语在线app| 亚洲无人区一区| 琪琪一区二区三区| 国精品**一区二区三区在线蜜桃| 国产精品18久久久| gogogo免费视频观看亚洲一| 在线免费观看不卡av| 欧美高清精品3d| 337p粉嫩大胆色噜噜噜噜亚洲 | 日本欧美肥老太交大片| 精品一区二区三区免费观看| 国产河南妇女毛片精品久久久| 99久久er热在这里只有精品15|